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ABSTRACT

We consider the computational complexity of pure Nash equilibria
in graphical games. It is known that the problem is NP-complete
in general, but tractable (i.e., in P) for special classes of graphs
such as those with bounded treewidth. It is then natural to ask:
is it possible to characterize all tractable classes of graphs for this
problem? In this work, we provide such a characterization for the
case of bounded in-degree graphs, thereby resolving the gap be-
tween existing hardness and tractability results. In particular, we
analyze the complexity of PURE-GG(C, —), the problem of de-
ciding the existence of pure Nash equilibria in graphical games
whose underlying graphs are restricted to class C'. We prove that,
under reasonable complexity theoretic assumptions, for every re-
cursively enumerable class C' of directed graphs with bounded in-
degree, PURE-GG(C, —) is in polynomial time if and only if the
reduced graphs (the graphs resulting from iterated removal of sinks)
of C have bounded treewidth. We also give a characterization for
PURE-CHG(C, —), the problem of deciding the existence of pure
Nash equilibria in colored hypergraphical games, a game repre-
sentation that can express the additional structure that some of the
players have identical local utility functions. We show that the
tractable classes of bounded-arity colored hypergraphical games
are precisely those whose reduced graphs have bounded treewidth
modulo homomorphic equivalence. Our proofs make novel use
of Grohe’s characterization of the complexity of homomorphism
problems.
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1. INTRODUCTION

There has been recent interest in using game theory to model and
analyze large multi-agent systems such as network routing, peer-
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to-peer fil sharing, auctions and other market mechanisms. One
fundamental class of computational problems in game theory is the
computation of solution concepts of a finit game, such as Nash
equilibria. These kinds of computational tasks can be understood
in the language of Al as reasoning about the game: what are the
likely outcomes of the game, under certain models of rationality
of the agents? The goal is to be able to efficientl carry out such
reasoning for real-world systems.

Much of the existing game theoretic literature models simultane-
ous action games using the normal form (also known as the strate-
gic form), i.e. a game’s payoff function is represented as a matrix
with one entry for each player’s payoff each combination of the ac-
tions of all players. The size of this representation grows exponen-
tially in the number of players. Computations that are “polynomial-
time” in the input size are nevertheless impractical. As a result the
normal form is unsuitable for representing large systems.

Fortunately, most real-world large games have highly-structured
utility functions, which allows them to be represented compactly.
A line of research thus exists looking for compact game representa-
tions that are able to succinctly describe structured games, and ef-
ficien algorithms for computing solution concepts that run in time
polynomial in the size of the representation. An influentia compact
representation of games is graphical games proposed by Kearns et
al. [16]. A graphical game is associated with a graph whose nodes
correspond to the players of the game and edges correspond to pay-
off influenc between players. In other words, each player’s pay-
offs depend only on the actions of himself and his neighbors in the
graph. The representation size of a graphical game is exponential
in the size of its largest neighborhood. This can be exponentially
smaller than the normal form representation of the same game, es-
pecially for sparse graphs.

A compact game representation is not very useful if we cannot
perform computations that are efficien relative to its size. In this
paper we focus on the problem of computing pure-strategy Nash
equilibria (PSNE). Unlike mixed-strategy Nash equilibria, which
are guaranteed to exist for finit games [18], in general pure Nash
equilibria are not guaranteed to exist. Nevertheless, in many ways
pure Nash equilibrium is a more attractive solution concept than
mixed-strategy Nash equilibrium. First, pure Nash equilibrium can
be easier to justify because it does not require the players to ran-
domize. Second, it can be easier to analyze because of its dis-
crete nature (see, e.g., [2]). Gottlob et al. [11] were the firs to
analyze the problem of computing pure Nash equilibria in graphi-
cal games. They proved that the problem is NP-complete in gen-
eral, even when the graphs have neighborhood size at most 3. On
the other hand, for games with graphs of bounded hypertree-width
there exists a dynamic-programming algorithm that determines the
existence of pure Nash equilibria in polynomial time in the size



of the representation. Daskalakis and Papadimitriou [7] reduced
the problem of findin pure strategy Nash equilibrium in graphi-
cal games to a Markov Random Field (MRF), and then applied the
standard clique tree algorithm to the resulting MRF. Among their
results they showed that for graphical games on graphs with log-
sized treewidth, bounded neighborhood size and bounded number
of actions per player, deciding the existence of pure Nash equilibria
is in polynomial time.

A natural question arises: are there other tractable classes of
graphical games? Such a tractable class can be define by restric-
tions over the graph structure as well as the local utility functions.
In this paper, we analyze the complexity of PURE-GG(C, —), the
problem of determining the existence of pure Nash equilibria in
graphical games whose underlying digraphs' are restricted to class
C (while other aspects of the game representation can be arbitrary).
We say C is tractable if PURE-GG(C, —) is in polynomial time.

Throughout the paper we make the restriction that the graphical
games have bounded neighborhood size (i.e. bounded in-degree).
Graphical games with large in-degree have the same problem as
normal form games: even if we fin polynomial-time algorithms
for them, that would still be impractical due tb the large input size.

Previous results [11, 7] do not answer whether bounded tree-
width is the sole measure of tractability of PURE-GG(C, —). For
example, it was unknown whether games with log-sized treewidth
and unbounded number of actions per player are tractable. Further-
more, there are other graph parameters that affect the tractability
of certain computational problems on directed graphs, e.g. directed
tree-width [15], D-width [20], DAG-width [19], and Kelly-width
[13]. Since these parameters take advantage of the directionality of
the edges, they could potentially give a better characterization of
the tractability of PURE-GG(C, —).

In this paper we give a complete characterization of the tractable
classes of bounded-indegree graphs, thereby resolving the gap be-
tween existing tractability and hardness results. Our results are
summarized below.

1. Bounded-treewidth graphs are not the only tractable kind of
digraphs. One example is graphical games on DAGs, for
which pure equilibria always exist and can be computed ef-
ficientl . More generally, whenever there is a sink (a vertex
with out-degree zero), the utilities for that sink player do not
affect the existence of pure equilibria.

2. Given a digraph G, let its reduced graph be the graph ob-
tained by iterated removal of sinks. We prove that, under rea-
sonable complexity theoretic assumptions, for every recur-
sively enumerable class C' of directed graphs with bounded
in-degree, PURE-GG(C, —) is in polynomial time if and only
if the reduced graphs of C' have bounded treewidth.

3. We consider colored hypergraphical games, a new game rep-
resentation based on colored hypergraphs, which can express
the additional structure that some of the players have identi-
cal local utility functions. For the pure equilibrium problem
on this representation PURE-CHG(C, —), we show that a
class of colored hypergraphs is tractable if and only if its re-
duced graphs have bounded treewidth modulo homomorphic
equivalence. This is a wider family of tractable games com-

'We defin graphical games on directed graphs (whereas
Daskalakis and Papadimitriou’s [7] definitio is based on undi-
rected graphs). The definitio with directed graphs is more gen-
eral, as graphical games on undirected graphs can be thought of
as games on directed graphs with bi-directional edges. Our result
applies to undirected graphs as a special case.
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pared to the graphical game representation. That is, by incor-
porating more information about the structure of the game
into the graph, we are able to identify new tractable classes
of games.

Our results for PURE-GG(C, —) follow as a corollary to our re-
sults for PURE-CHG(C, —). Another corollary is that if the graph-
ical games are represented as undirected graphs, then the tractable

classes of undirected graphs are precisely those with bounded treewidth.

We prove these results by connecting PURE-GG(C, —) and
PURE-CHG(C, —) to homomorphism problems, which given col-
ored hypergraphs G and H, ask whether there exists a homomor-
phism from G to H. We then make use of Grohe’s [12] break-
through result that characterizes the tractable classes of HOM(C, —)
homomorphism problems with restricted left-hand side. This is
(as far as we know) a novel application of Grohe’s result for ho-
momorphism problems to computational problems in game theory.
We prove our main tractability result by reducing an arbitrary in-
stance of PURE-CHG(C, —) to an instance of the homomorphism
problem. This reduction has a similar structure as [11]’s formu-
lation of graphical games as constraint satisfaction problems. On
the other hand, our proof for our hardness result is quite unlike the
existing NP-hardness proof for graphical games [11]. At a high
level, this is because the previous approach would construct graph-
ical games on graphs with a certain specifi structure. This is suf-
ficien for proving NP-hardness, but not for our purposes, because
we want to characterize the complexity for PURE-CHG(C, —) for
arbitrary C, which implies that we had to instead construct our
graphical/colored hypergraphical game on an arbitrarily given di-
graph/colored hypergraph. In other words, we only have control
over the utility functions (but not the graph structure), and need
to set the utilities such that there is a solution to the given homo-
morphism problem if and only if the game has a pure equilibrium.
This makes our task more technically challenging. We think our
proof techniques may have wider interest; for example, it might
be possible to extend these techniques to prove similar results for
action-graph games [1], another compact game representation.

These results increase our understanding of the power and lim-
itations of the graphical game representation, and have immediate
practical impact. Specificall , they imply that if the systems we are
interested in have large-treewidth reduced graphs when modeled as
graphical games, then the resulting graphical games are unlikely to
admit an polynomial-time algorithm for pure Nash equilibria, even
if the graphs have other types of structure. Nevertheless, if some
of the players have identical utility functions, we might be able to
get around this limitation of graphical games by representing the
systems as colored graphical games instead. If the corresponding
reduced graphs have bounded treewidth modulo homomorphism
equivalence, pure Nash equilibria can be found efficient] by trans-
forming to the corresponding homomorphism problems which have
known polynomial-time algorithms [5, 12].

2. PRELIMINARIES

2.1 Graphical Games

A (simultaneous-move) gameis a tuple (N, {S; }ien, {ui bien)
where N = {1,...,n} is the set of agents; for each agent i, S;
is the set of ¢’s actions. S; is nonempty. An action profil s €
[I;cn Siis a tuple of actions of the n agents. w; : [[;cn S5 — R
is 4’s utility function, which specifie ¢’s utility given any action
profile

For every action profil s, let s; be the action of agent 7 under this
action profile and s_; be the (n — 1)-tuple of the actions of agents



other than 4 under this action profile For each action s; € S;, let
(si,s_;) be the action profil where agent i plays s; and all the
other agents play according to s_;.

A game representation is a data structure that stores all informa-
tion needed to specify a game.

DEFINITION 1. A graphical game representation is a tuple
(G,{Ui}ien) where

e G = (N, E) is a directed graph, with the set of vertices
corresponding to the set of agents. E is a set of ordered
tuples corresponding to the arcs of the graph, i.e. (¢,7) € E
means there is an arc from 4 to j. Vertex j is a neighbor of ¢
if (4,4) € E.

e foreachi € N, alocal utility function Us : [];cpnrs) S5 —
Rwhere N'(i) = {i} U{j € N|(j,i) € E} is the neighbor-
hood of 4.

Each local utility function U; is represented as a matrix of size
[1;enrqi [S5]- Since the size of the local utility functions dom-
inates the size of the graph G, the total size of the representa-
tion is O(nm**V) where Z is the maximum in-degree of G and
m = max;ecnN |S]".

A graphical game (G, {U;}) specifiec a game (N, {S;}, {ui})
where each S; is specifie by the domain of agent ¢ in U;, and for
all i € N and all action profil s we have u;(s) = Ui(sn)),
where sx) = (85)jen(i)-

2.2 Colored Hypergraphical Games

‘We now consider graphical games with a certain additional struc-
ture. Specificall , some players may have identical local utility
functions.’

To represent this kind of structure, we not only need to specify
which players have the same local utility function, we also need to
specify an ordering of the vertices in each neighborhood. We ex-
press this kind of structure graphically using colored hypergraphs.

A colored hypergraph H = (V, E, C) consists of a set of ver-
tices V, a set of edges E where every edge e € FE is an ordered
tuple of vertices in V> and a color function C' : E — 7 that maps
each edge to its color. In other words, each edge e € E is labeled
with a color C'(e). We denote as V(H), E(H) and Cy the set of
vertices, set of edges and the color function of colored hypergraph
H, respectively.

We are now ready to defin colored hypergraphical games. In-
tuitively, in a colored hypergraphical game, the players affecting
player 4’s utility are represented as a colored hyperedge consisting
of these players’ vertices, with ¢ being the firs element. If two
hyperedges have the same color, it means that their corresponding
local utility functions are identical.

DEFINITION 2. A colored hypergraphical game is a tuple
(G,{Uc}cer), Where

e G = (N,E,C)isacolored hypergraph with the set of col-
ors T;

*For simplicity of presentation, we assume each player have the
same number of actions. We can convert an arbitrary game to our
setting by adding dummy actions. Since we are only focusing on
graphical games with bounded in-degree, this would only increase
the representation size by a polynomial factor.

3Note that the definitio we use is slightly different from the com-
mon definitio of hypergraphs in which each edge is an unordered
set of vertices.
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e the set of vertices V(G) = N corresponds to the set of play-
ers;

o for each vertex v € N, there exists exactly one edge e € E
that has v as the first element. Denote this edge as e,.

e for each color ¢ € 7, edges of color ¢ have the same arity*
Ze.

e each player has m actions. Let [m] = {1,...,m}.

e for each color ¢, U, : [m]*c — R.

A colored hypergraphical game (G, {U; }) specifie a game
(N, {Si}, {ui}) where each S; = [m] and for each ¢ € N and
each action profil s, ui(s) = Ug(e,)(se; )

Unlike graphical games, where given an arbitrary digraph G
there is a graphical game on G, not all colored hypergraphs have
corresponding colored hypergraph games. Let X be the set of col-
ored hypergraphs of colored hypergraph games.

Given G € X, we defin its induced digraph D(G) to be a di-
graph on the same set of vertices; and for each hyperedge (v, v1, . ..
in G we create directed edges (v1,v), ..., (vy, v) in D(G).

Graphical games can be thought of as special cases of colored
hypergraph games where each neighborhood has a different lo-
cal utility function, i.e. a different color. Given a directed graph
G = (V, E), we defin its induced colored hypergraph H(G) =
(V, &, C) such that its set of colors is V and for each vertex v € V,
there is a hyperedge e € & of color v, consisting of vertices in
N (i), with v being the firs element in the tuple e. The rest of the
vertices in e is sorted in a pre-determined order over V. In particu-
lar, if the vertices correspond to the agents 1,...,n in a game, we
require these vertices to be sorted in ascending order of the agents.
By construction, D(H(G)) = G for all digraph G. Given a graph-
ical game I' = (G, {U }sen), its induced colored hypergraphical
game is H(I") = (H(G),{Ui}ien). It is straightforward to verify
that I" and H(I") represent the same game.

For notational convenience, given a class of directed graphs C,
let H(C) be the class of induced hypergraphs of the directed graphs
inC.

There is one graph often associated with any hypergraph: the pri-
mal graph. Given a colored hypergraph H, its primal graph pri( H )
is an undirected graph obtained by making a clique out of the ver-
tices in every edge in H.

There are a couple of previous papers on the computational prop-
erties of graphical games with different notions of identical utility
functions. Daskalakis et al. [6] analyzed the complexity of find
ing pure and mixed Nash equilibria of graphical games on highly
regular graphs (namely the d-dimensional grid), in which all local
payoff functions are identical. Brandt et al. [3] instead analyzed
graphical games on arbitrary graphs, but with several stronger no-
tions of symmetry. In contrast, the colored hypergraphical game
formulation places the least amount of restrictions and is thus more
likely to occur in practice. In fact, these previous formulations can
be thought of as special cases of colored hypergraphical games.

2.3 Best Response and Pure Nash Equilibrium

Given a game (N, {S;}ien, {u:}ien) and s_;, agent i’s best
response to s—; is BR;(s—;) = argmaxs,es; ui(si, S—;). Since
S; is nonempty, ¢ has at least one best response given any s_;. Note
that in a graphical game, the best response of ¢ depends only on the
actions of i’s neighbors.

*The arity of an edge e is its size, i.e. number of elements.



DEFINITION 3. An action profile s € [, S: is @ pure Nash
equilibrium of the game (N, {Si}icn, {u: }ien) if each agent i €
N is playing a best response to s_;, i.e. s; € BR;(s—;).

We defin PURE-GG to be the following decision problem: given
a graphical game (G, {U; }icn ), decide whether there exists a pure
Nash equilibrium. Gottlob et al. [11] have shown that this problem
is NP-complete in general. Given a class C' of digraphs and class
U of local utility functions, let PURE-GG(C, ) be the pure Nash
equilibrium decision problem on graphical games when the graphs
of the input game are taken only from class C' and the local utility
functions are taken only from class /. In this paper we are inter-
ested in problems of the form PURE-GG(C, —), which means that
the local utility functions are unconstrained, other than the require-
ment that the input is a well-formed graphical game, i.c. that each
U; takes [N (i)| arguments.

Similarly, we defin the problem PURE-CHG(C, —) to be the
pure Nash equilibrium decision problem on colored hypergraphical
games, with colored hypergraphs restricted to class C.

2.4 Treewidth

Due to space constraints we omit the standard definitio of treewidth

for undirected graphs (see, e.g., [17]). The treewidth of a digraph
G is the treewidth of the undirected version of G. The treewidth of
a colored hypergraph is the treewidth of its primal graph.

2.5 Homomorphism

Let G and H be two colored hypergraphs. A homomorphism
from G to H is a mapping h from the vertex set of GG to the vertex
set of H that preserves both adjacency and color, i.e. for every edge
e = (a1,az, - ,ar) € Eg, h(e) = (h(a1), h(az), -+ ,h(ax)) €
Ey and Ce(e) = Cu(h(e)). Inahomomorphism problem, we are
given GG and H and have to decide whether there exists a homomor-
phism from G to H.

For two classes C and D of colored hypergraphs let HOM(C, D)
be the homomorphism problem when the input colored hypergraphs
are taken only from classes C and D. When an input class is the
class of all colored hypergraphs, we use the notation ‘—’ instead.

Two hypergraphs G and H are homomorphically equivalent if
there is a homomorphism from G to H and vice versa. A class C
has bounded treewidth modulo homomorphic equivalence if there
exists some constant k& such that every hypergraph in C' is homo-
morphically equivalent to a hypergraph with treewidth at most k.
For example the class of bipartite graphs have bounded treewidth
modulo homomorphic equivalence as they are homomorphically
equivalent to an edge. We use modulo-treewidth(G) to indicate
the minimum k for which G is homomorphically equivalent to a
hypergraph of treewidth k.

EXAMPLE 4. We describe a class of colored hypergraphical
games with bounded treewidth modulo homomorphism equivalence.
Each game has m?+-2m players. There are 4 colors {L, R, X, Y'}.
We have m players labeled [; .. . 1,,, and m players labeled
r1i,...,"m. FoOreachi,j € {1,...,m} we have a player z;;
and a player y;;. For each player x;;, we have an hyperedge
(x5, yi5,li,5) Of color X; for each player y;;, we have an hy-
peredge (yij, zi;,li, ;) of color Y. Furthermore for each player
1; we have a hyperedge (I;) of color L and for each player r; we
have a hyperedge (r;) of color R. The colored hypergraph is ho-
momrophically equivalent to the fragment involving only the ver-
tices 11,71, 211, y11 and their corresponding hyperedges. There-
fore these colored hypergraphical games have modulo-treewidth 3,
while the treewidth of each hypergraph is at least m.
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2.6 Parameterized Complexity Theory

Our results make use of certain concepts from he theory of pa-
rameterized complexity developed by Downey and Fellows [9].
They are not essential for understanding our reductions. We briefl
mention the relevant concepts here and refer the reader to [9, 10]
for more details.

Given a decision problem P C X*, a parameterization of P
is a mapping k : ¥* — N that define the paramterized problem
(P, k). A paramterized problem (P, k) is fixed parameter tractable
if there is a computable function f : N — N and an algorithm
that decides if a given instance z € X* belongs to P in time
f(k(z))]z|°® for some function f depending only on k. The
class of all fi ed parameter tractable problems is denoted by FPT.

Downey and Fellows [8] define the paramterized complexity
class W[1], which can be seen as an analogue of NP in parametrized
complexity theory, and conjectured that FPT is a proper subset of
WI1]. This conjecture is widely believed to be true.

Let p-HOM(C, —) be the parametrized version of HOM(C, —),
with the parameter being the representation size of the left colored
hypergraph. Similarly we defin p-PURE-GG(C, —) and
p-PURE-CHG(C, —) to be the parametrized versions of
PURE-GG(C, —) and PURE-CHG(C, —), with the parameters be-
ing the representation sizes of the directed graph and the colored
hypergraph, respectively.

2.7 Complexity of Homomorphism Problems

Grohe [12], in a breakthrough paper, characterizes the tractable
instances of the homomorphism problem when we restrict the left
input graphs.’

THEOREM 5 (GROHE [12]). Assume FPT ## W[1]. Then for
every recursively enumerable class C' of colored hypergraphs with
bounded arity the following statements are equivalent.

1. HOM(C, —) is in polynomial time.
2. p-HOM(C, —) is fixed-parameter tractable.
3. C has bounded modulo-treewidth.

Under a slightly stronger assumption of nonuniform-FPT #
nonuniform-W[1], this result holds for arbitrary (not necessarily
recursively enumerable) class C'.

3. MAIN RESULT
3.1 Digraphs with sinks

One’s firs intuition is to try and show a correspondence between
PURE-GG(C, —) and HOM (H(C'), —) for arbitrary classes of
bounded-degree graphs. In fact such correspondence does not exist
for arbitrary graphs. For example, a graphical game on a directed
acyclic graph (DAG) always has a PSNE, which can be computed
efficientl by a greedy algorithm that goes through vertices in the
topological order, from sources to sinks. Consider the class Dy,
of k-bounded in-degree DAGs. H(Dy) has unbounded modulo-
treewidth, however PURE-GG(Dj,, —) is in polynomial time. This
is just an example of a more general phenomenon in graphical
games. Let GG = (G, {U;}ien) be a graphical game. If G has
a sink u (i.e. u has out-degree zero) then the action of u does not
affect any other player. This means we can simply solve the game
without player w and the resulting game has a pure Nash equilib-
rium if and only if GG has one.

*Grohe stated his result on relational structures instead of colored
hypergraphs. The two formulations are equivalent.



Intuitively, this is because in a graphical game (and any game in
general) each player has at least one action, and as a result, what-
ever actions others chose, each player has at least one best response.

We formalize this intuition as the following classificatio of di-
graphs into reducible and irreducible graphs:

DEFINITION 6. A directed graph G is irreducible if it does not
have a sink (a vertex with out-degree zero). Otherwise G is re-
ducible.

It is often helpful to consider the strongly connected components
(SCCs) of a directed graph. In particular, we can characterize irre-
ducible graphs by their terminal SCCs.

DEFINITION 7. A strongly connected component(SCC) = of G
is terminal if there is no outgoing edges from 7. A terminal SCC is
by definition a maximal SCC.

LEMMA 8. If G is irreducible then all its terminal SCCs have
size at least 2.

This is because otherwise, a vertex in a terminal SCC with only one
vertex would have out-degree zero.

It turns out that for our purposes, given an arbitrary digraph we
can focus on its subgraph resulting from iterative removal of sinks.

DEFINITION 9. Given a directed graph G, its reduced graph
red(G) is the result of the following algorithm:

1. repeat until G does not change:

(a) remove all vertices with out-degree zero as well as their
incoming edges.

2. return G

DEFINITION 10. Givenagraphical game GG = (G, {U; }ien)
its reduced game red(GG) is (red(G), {Ui}icv (red(a))), i-€. the
game obtained by removing all agents corresponding to reducible
vertices of G.

red(GG) is well define because for all v € red(G), vertices that
are neighbors of ¢ in GG are not reducible vertices, so they are still
present in red(G).

LEMMA 11. A graphical game GG has a pure Nash equilib-
rium if and only if its reduced game red(GG) has a pure Nash
equilibrium.

LEMMA 12. Suppose C is a recursively enumerable class of
graphs with bounded in-degree, such that PURE-GG(red(C), —)
isin P. Then PURE-GG(C, —) isin P.

For the other direction, we would like to prove that if graphical
games on a class of graphs C is tractable, then graphical games on
red(C) is also tractable. This is not trivial, because although the
reducible vertices of graphs in C do not affect the existence of pure
equilibria, the subgraphs on these vertices could potentially carry
information (similar to advice strings in complexity theory) such
that PURE-GG(C, —) is easier than PURE-GG(red(C), —). It turns
out that if we consider the parameterized version of the problem,
then if p-PURE-GG(C, —) is in FPT then p-PURE-GG(red(C), —)
is in FPT. This will be sufficien for our purposes. The proof of the
following lemma is given in Appendix A.

LEMMA 13. Suppose C is a recursively enumerable class of
graphs with bounded in-degree, such that p-PURE-GG(C, —) is in
FPT. Then p-PURE-GG(red(C), —) is in FPT.

203

We can defin analogous concepts for colored hypergraphs and
colored hypergraphical games, by looking at their induced digraphs.
A colored hypergraph G € ¥ is irreducible if and only if its in-
duced digraph is irreducible. Given G € ¥, its reduced colored
hypergraph red(G) is obtained by removing all reducible vertices
of the induced digraph of G and all hyperedges that include these
reducible vertices. Reduced colored hypergraphical games can be
define similarly. Lemmas 12 and 13 can be straightforwardly ex-
tended to colored hypergraphical games.

3.2 Main Theorems

The above implies that for the complexity of PURE-GG(C, —)
and PURE-CHG(C, —), itis sufficien to consider irreducible graphs.
The complexity for a general class C' then correspond to the com-
plexity for red(C'). It turns out that if we restrict to irreducible
graphs, there exists a correspondence between PURE-CHG(C, —)
and HOM (H(C), —). We are now ready to state our main result,
which will be proved in the rest of Section 3:

THEOREM 14. Assume FPT # WI[1]. Then for every recur-
sively enumerable class of bounded arity colored hypergraphs C C
¥, the following statements are equivalent.

1. PURE-CHG(C, —) is in polynomial time.
2. p-PURE-CHG(C, —) is fixed-parameter tractable.

3. for every G € C, red(G) has bounded modulo-treewidth.

The direction 1 — 2 is trivial; the “tractability” direction 3 — 1 is
proved in Section 3.3; the “hardness" direction 2 — 3 is proved in
Sections 3.4 and 3.5.

We then obtain as a corollary the characterization for the com-
plexity of PURE-GG(C, —). We make use of the following lemma
on the modulo-treewidth of H(G).

LEMMA 15. Givenadigraph G, the modulo-treewidth of H(G)
equals the treewidth of H(G).

Furthermore, we can relate the treewidth of a digraph G to the
treewidth of H(G). Daskalakis and Papadimitriou [7] showed that
given an undirected graph H with bounded degree, the treewidth
of its induced hypergraph H (H) and the treewidth of H are within
a constant factor of each other. This result cannot be directly ap-
plied to digraphs, because the induced hypergraph of the undirected
version of a digraph G can be different from H(G). Nevertheless,
their proof can be relatively straightforwardly adapted to digraphs,
yielding the following lemma.

LEMMA 16. Given a digraph G with bounded in-degree, the
treewidth of H(G) and the treewidth of the undirected version of G
are within a constant factor of each other.

This means for our purposes bounded treewidth of H(G) implies
bounded treewidth of GG and vice versa. We are now ready to state
the characterization for PURE-GG(C, —), which is a direct conse-
quence of Theorem 14 and Lemmas 15 and 16.

COROLLARY 17. Assume FPT # W[1]. Then for every recur-
sively enumerable class C of digraphs with bounded in-degree the
following statements are equivalent.

1. PURE-GG(C, —) is in polynomial time.
2. p-PURE-GG(C, —) is fixed-parameter tractable.
3. forevery G € C, red(G) has bounded treewidth.



Comparing Theorem 14 and Corollary 17, CHGs gives a wider
family of tractable games compared to graphical games. For ex-
ample, the class of CHGs described in Example 4 has bounded
modulo-treewidth but unbounded treewidth. Thus they would be
intractable if represented as graphical games.

We also obtain as a corollary the characterization for the pure
equilibrium problem for graphical games define on undirected
graphs. Defin PURE-UGG(C, —) to be the problem of deciding
existence of pure equilibrium on such undirected graphical games,
restricted to the class of graphs C. Then under the same assump-
tions, C'is tractable if and only if its graphs have bounded treewidth.

3.3 Proof of Tractability Result

We use the following lemma that reduces a colored hypergraph-
ical game to a homomorphism problem instance. The tractability
direction of Theorem 14 then follows straightforwardly.

LEMMA 18. LetT' = (G, {U;}icn) be a colored hypergraph-
ical game. It is possible to construct in polynomial time an in-
stance (G, H')of homomorphism problem such that " has a pure
equilibrium if and only if there exists a homomorphism from G’ to
H'. Furthermore if G has bounded arity and bounded modulo-
treewidth then so does G’

PROOF. Given a colored hypergraphical game I' = (G, {U.}cer),
each player having m actions, we construct the instance (G', H')
of the homomorphism problem as follows. Let G’ = G. H' con-
sists of m vertices, one for each action in [m]. For each color ¢, for
each action tuple (a, a1, az,- - ,a,) such that

I
a € arg max Uc(a',a1,az2, -+ ,ar)
a’e[m]

(i.e. a is a best response for a player with utility function U, given
neighbor actions (a1, az, - - - ,ar)), create an hyperedge
(a,a1,az2,- - ,a,) of H with color c.

If " has a pure Nash equilibrium then the mapping that maps
each vertex u to the vertex a, where a is the action chosen by u
in the pure Nash equilibrium, is a homomorphism. For the other
direction, if H’ is a homomorphism of G’ and the corresponding
mapping function is ¢ then £(u) corresponds to an action of u, and
for every edge " = (u,u1,uz,- -+ ,ur) of color cin G, £(e*) =
((w), l(u1),€(uz), - ,£(u,)) must be an edge of color c in H'.
This implies that £(u) is a best response action of player u against
his neighbors’ actions. Therefore, the mapping ¢ corresponds to a
pure Nash equilibrium.

Since G is identical to G, both maximum arity and modulo-
treewidth remain unchanged. [

3.4 Hardness for graphical games

We firs consider the hardness result for graphical games. In
Section 3.5 we extend our approach to colored hypergraph games.

As mentioned in the introduction, applying the hardness proof
approach of [11] to our setting would create graphical games with
a particular structure, which is not sufficien for our purpose be-
cause we want to characterized the complexity of PURE-GG(C, —)
given an arbitrary class C'.We thus use a different construction in
our proof of the hardness direction, which starts with an arbitrary
class C' of irreducible digraphs, constructs a bijective mapping to
a class C” of colored hypergraphs, and then show that for any in-
stance (G, H) of HOM(C', —) we can construct an equivalent
instance of PURE-GG(C, —). We can then apply Theorem 5 to get
the hardness result.

The key step of the proof is the following lemma. Recall that
given digraph G, H(G) is the colored hypergraph with hyperedge
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e; (the edge that corresponds to vertex ¢ and its neighbors) being
colored with color 3.

LEMMA 19. Let G be an irreducible digraph. Then for any
colored hypergraph H, there exists a graphical game GG =
(G,{U;}ien) such that there is a homomorphism from H(G) to
H ifand only if GG has a PSNE.

The reduction is outlined as follows. (We give a detailed proof
of the lemma in Appendix B.) Each player’s action set consists of
V (H) plus some “failure actions”, in this case 7" and B. We defin
the utility for 4, given a local strategy profil over N(i), such that
if the local strategy profil correspond to a hyperedge in H of color
i, then 7 gets a high payoff (say 100), such that if there exists a
homomorphism from H(G) to H, then the corresponding strategy
profil isa PSNE.

If the local strategy profil does not correspond to an edge of
right color in H, we set the utilities so that player ¢ is forced to play
one of the failure actions. This implies that out-neighbors of i are
forced to play failure actions, and so on. Now we just need to set
utilities such that if at least one player plays failure actions, then no
PSNE exists. Recall that if G was a DAG, then there always exists
a PSNE; i.e. a game construction with no PSNE must contain a
cycle. Fortunately G is assumed to be irreducible, which means
that all of its terminal SCCs has a directed cycle of length at least
2. For each of the terminal SCCs, fi a cycle and set the utilities of
players on that cycle (given failure actions of their neighbors) to be
a generalization of the Matching Pennies game: one of the players
is incentivized to play the opposite failure action as his predecessor
in the cycle, while all other players on the cycle are incentivized to
imitate their predecessors.

If there is no homomorphism, then for any strategy profile there
must be one player forced to play failure actions, which implies that
at least one terminal SCC play failure actions, which implies that
one of these cycles are playing the generalized Matching Pennies
game, which does not have a PSNE.

Using Lemma 19, given an FPT algorithm for p-PURE-GG(C, —)
we can construct an FPT algorithm for p-HOM(C", —) where C’ =
{H(G)|G € red(C)}. This implies the hardness direction for
graphical games.

3.5 Hardness for colored hypergraphical games

To prove the hardness direction of Theorem 14, it is sufficien to
extend Lemma 19 to colored hypergraphical games:

LEMMA 20. Let G € ¥ be an irreducible colored hypergraph.
Then for any colored hypergraph H, there exists a colored hyper-
graphical game I' = (G, {U.}.c~) such that there is a homomor-
phism from G to H if and only if I" has a PSNE.

We sketch a proof of the lemma in this section. At a high level,
the main difficult when extending our proof of Lemma 19 to col-
ored hypergraphical games is that players with the same color must
have the same utility function. Instead of being able to specify the
utility function for each player in the graphical game case, now we
need to defin one utility function U, for each color c. In fact, our
generalized Matching Pennies construction for the graphical game
case cannot be directly applied to colored hypergraphical game,
and our proof of Lemma 20 instead uses a different construction
involving 2n + 1 failure actions for each player.

Part of the hardness proof for graphical games can be relatively
easily adapted to colored hypergrahical games: each player’s action
set still consists of V/(H) plus some failure actions (to be specifie
later). We set the utility function U, so that if the input action
tuple corresponds to a hyperedge of color ¢ in H, then the utility is



100. This will ensure that if there exists a homomorphism, then the
corresponding strategy profil is a PSNE. This concludes the proof
of the “if” direction of Lemma 20.

The “only if” direction is more difficult In particular, it is dif-
ficul to defin the utilities for the failure actions in a way that re-
spects the color constraints. For one, we would not be able to ex-
press the generalized Matching Pennies game now: in the worst
case all players may have the same color. Also, we cannot specify
a cycle and then defin utility functions on that cycle in a way that
ignore all edges not in the cycle: this would also require player-
specifi utility functions.

Thus we want the utilities given failure actions to not depend
on the player. For the simple case of a single cycle, the follow-
ing construction is sufficient (For notational convenience, we only
specify the best response function B R, which maps a tuple of ac-
tions of the neighbors to a single action as the best response. Given
the BR function the utilities can be define straightforwardly.)

LEMMA 21. Given a colored hypergraph GG, whose induced di-
graph consists of just one cycle with length n, the following colored
hypergraphical game on G does not have PSNE:

e each player’s actions are the integers 0, ..., p — 1;

e let BR(a) = (a+1) mod pwherep >n+ 1.
We omit the straightforward proof. If we think of BR as arcs from
a to BR(a), then the digraph on actions form a p-cycle.

This can be extended to strongly connected digraphs, by the the
following construction:

LEMMA 22. Given a colored hypergraph G, whose induced di-
graph is strongly connected, the following colored hypergraphical
game on G does not have PSNE:

e each player’s actions are the integers 0, ..., n;

e given neighbors’ actions (si, ..., sm), let BR(s1, ...
(max{si,...,sm}+1) mod (n+1).

78771)

The intuition is that for each strategy profile at least one neighbor
is "activated" in the following sense: Given digraph G = (V, E),
strat profil s, we say an edge (u,v) € E is active if

u € arg max

S,/
u':(u,v)EE “

i.e. u’s action under s is maximal among v’s neighbors. Let G’
be the subgraph of G where we only keep the active edges, i.e. for
each player 4, only keep the edge from the neighbor playing the
highest action among neighbors. We claim that G’ must contain a
cycle, i.e. is not a DAG. This is because G is strongly connected,
which means it has no source, i.e. all vertices of GG have positive
number of incoming edges. This implies that all vertices of G’
have positive number of incoming edges, i.e. G’ has no source.
Therefore G’ is not a DAG.

Since G’ must contain a cycle, on that cycle BR(a) = (a + 1)
mod (n + 1), which implies that at least one player on that cycle
is not playing a best response. Therefore s must not be a PSNE.

The above construction does not directly work for the general
case of digraphs with no sinks: now G’ could be a DAG. It turns
out that we can indeed fi the construction to work for all digraphs
with no sinks. At a high level, instead of forming a best-response
cycle with the actions, we form a p shape with a cycle and a tail.

We now complete the specificatio of the utility functions for our
construction for Lemma 20. The failure actions are 1,...,2n + 1.
If the input action tuple of U, does not correspond to a hyperedge
in H with the same color ¢, then:
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e if no neighbors are playing failure actions, then utility of
playing failure action 1 is +1, all others -100;

e otherwise, let fmax be the max failure action of neighbors.
If foax < 2n + 1, then BR = foax + 1; otherwise (i.e.
fmax =2n+ 1), let BR=n+ 1.

We now sketch the “only if”” direction of Lemma 20. If there is
no homomorphism, then for any strategy profile some player must
play failure actions, which implies that some SCC (and all SCCs
reachable form there) must play failure; the other SCCs must not
play failure actions. Given a strategy profile consider the “earliest
reached" non-singleton SCC, as define by the following process:
go through SCCs in topological order, in the direction of the edges;
return the firs non-singleton SCC whose players choose failure ac-
tions. All earlier SCCs are either not playing failure actions, or a
singleton SCC that is playing failure action a <= n.

Given strategy profil s, consider the graph Gy, which is the
subgraph of G restricted over the earliest non-singleton SCC and
all earlier singleton SCCs playing failure actions:

First, we claim that if one player j in the non-singleton SCC is
playing an action less or equal to n, then s must not be a PSNE.
This is because for such an action b < n to be a best response,
all incoming neighbors within the SCC must be playing even lesser
failure actions. If we iteratively follow an incoming neighbor within
the SCC, thus with decreasing actions, we either encounter j again,
with action less than b, a contradiction, or a player £ playing action
1. For 1 to be a BR, all neighbors must not play failure actions;
but £ is in a non-singleton SCC with all players playing failure ac-
tions, so there must be at least one neighbor playing failure actions,
a contradiction.

Therefore, in order for s to be an PSNE, all players in the non-
singleton SCC must play failure actions greater than n. We claim
that if this is the case, then each vertex in the non-trivial SCC must
have an active neighbor in the same SCC. This is because if an edge
from a singleton SCC in Gy to a player 4 the non-singleton SCC in
G is active, then because the player in the singleton SCC is play-
ing some action a <= n, the target player ¢ in the non-singleton
SCC must have an inactive neighbor in that SCC, i.e. some player
Jj in the non-singleton SCC is playing b < a < n. We have argued
above that this would contradict with s being a PSNE. Therefore,
each vertex in the non-trivial SCC must have an active neighbor in
the same SCC. By the same argument as for the strongly connected
digraph case, there must exist an active cycle in the SCC. Since ev-
ery player on that active cycle is playing an action greater than n,
they are playing a shifted version of the game in Lemma 22. This
implies that s cannot be a PSNE.

4. DISCUSSION AND FUTURE WORK

Our results can be understood as establishing an equivalence
between PSNE problems and homomorphism problems. Such a
equivalence relation is closer than the kind of equivalence between
two NP-complete problems: we are in fact showing a family of
equivalences, between PURE-CHG(C, —) for an arbitrary class C
and HOM(red(C'), —). On the other hand, our results also show
that there are certain differences between the two problems: be-
cause in a graphical/colored hypergraphical game each player has
at least one best response regardless of her neighbors’ actions, we
can iteratively remove sinks without affecting the answer, whereas
the same does not hold for homomorphism problems in general.

We have focused on the decision problem on the existence of
pure Nash equilibria. Related problems include counting the num-
ber of pure Nash equilibria and findin one such equilibrium if one
exists. On the homomorphism problem side, Dalmau and Jonsson



[4] gave a characterization of the complexity of the counting ver-
sion of HOM(C, —), while the characterization for the construction
problem is still open. An interesting direction is to adapt our reduc-
tions to the counting and construction versions of these problems,
as well as to cases with unbounded in-degree. Another direction is
to use similar techniques to prove characterizations for other game
representations such as action graph games [1, 14].
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APPENDIX
A. PROOF OF LEMMA 13

PROOF. Given class C with in-degree bounded by Z, and an
FPT algorithm for p-PURE-GG(C, —), we now construct a fi ed-
parameter tractable algorithm for p-PURE-GG(red(C), —). Given
G’ € red(C), we run the following algorithm:

1. Enumerate the class C until we fin a graph G € C such that
G’ =red(G).
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2. Run algorithm for p-PURE-GG(C, —) on G.

We claim that Step 1 always terminates and its running time is
bounded by a computable function on the size of G’. This is be-
cause the class C is recursively enumerable, and because by def-
inition, for each G’ € red(C), there exists a graph G € C such
that G’ = red(G). Therefore we have a fi ed-parameter tractable
algorithm for p-PURE-GG(red(C), —). [

B. PROOF OF LEMMA 19

PROOF. Let G’s terminal SCCs be 1, ..., 7y, For each ;, fi
acycled — ... — zfAJ — 43. This is always possible since G
is irreducible and, hence, every terminal SCC has at least two ver-
tices. These cycles are disjoint since the terminal SCCs are maxi-
mal SCCs.

The graphical game GG is constructed as follows.

e Each player i’s action setis V' (H) UT U B. T and B are the
“failure actions”.

e Player ¢’s utility: by the definitio of graphical game, his util-
ity depends on the actions chosen by him and his neighbors.
Letp; € Hje N (D) S; be the tuple of actions chosen by ¢ and
its neighbors.

1. If p; corresponds to a hyperedge in H with the same color
as e; (the edge corresponding to (7)), then ¢’s utility is
100.

2. Otherwise:

(a) If7 is not playing one of the failure actions 7" or B,
then ¢ gets —100.
(b) Otherwise, ifi = z; in one of the pre-define cycles:
i. Ifk > 0,theni = zi ’s payoff depends only on the
actions of herself and iifl. If ii% plays other
than 7" or B, i gets 0 by playing either T" or B.
Otherwise, ¢ gets 1 if both she and ], plays T
or both plays B, and -1 otherwise.
ii. Ifk =0, thent = ié ’s payoff depends only on
the actions of herself and zij If zij plays other
than 7" or B, ¢ gets 0 by playing either 7" or B.
Otherwise, 7 gets -1 if both she and 117 plays T or
both plays B, and 1 otherwise.

(c) Otherwise, ¢ gets 0 (by playing either 7" or B).

We claim that this graphical game has a PSNE if and only if there
is a homomorphism from HG to H.

if part: if there exists a homomorphism from HG to H whose
mapping function is h, then in the graphical game, the strategy in
which each player 7 plays h(i) is a Nash equilibrium.

only if part: A PSNE where everyone gets 100 corresponds to
a homomorphism. Furthermore, the only PSNE of the graphical
game are ones where every player gets 100. This is because if
some player ¢ fails to get 100, then he has to play 7" or B to avoid
the -100 penalty. This makes all his (outgoing) neighbors fail to get
100 as well, so they also have to play 7" or B. i is either part of
a terminal 7r; or there is a path to a vertex in a terminal 7;. Since
1 plays failure actions all players in 7; must play failure actions
as well. Therefore the pre-define cycle @) — ... ' ;
play failure actions. The utilities are set up so that the players in
this cycle are playing a game similar to Matching Pennies, and it
is straightforward to verify that there is no PSNE if they play the
failure actions. Therefore there’s no PSNE unless everyone gets
100. [



